
Assign digits to folding directions: 1= left turn; 2 = right turn

The paper folding number

1
Only one fold

110
Three folds:
The first one stays, but
beforeand behind we add
new folds in the same
and opposite direction.

1101100
Seven folds:
Now we have the first
three folds like in the
step before, than a left
fold and then three folds
in the opposite direction
and inverse order
of the preceeding step.

This leads to the iteration formula:

S0 = 1
S1 = 110 = S01S0

S2 = 1101100 = S11S1

S3 = 110110011100100 = S21S2

...
Sn+1 = Sn1Sn, with S = S where 1<>0 is exchanged and direction inversed

If you indicate the digits from left to right from 0 to m=2n+1-2
then you can write:
Sn = an

0an
1...an

m

Because you add the new folds between the old ones you get
Sn-1 = an

1an
3an

5...

Find out by yourself, that every second digit alternates between
0 and 1. Then find out, that of the other digits every second
alternates between 0 and 1 and so on...

So i came up with the idea of following algorithm:

for i = 0 to 2n+1-2
 if i is even then {
 if int(i/2) is even then an

i = 1 else an
i = 0}

 else {if int(i/2) is even then {
 if int(i/4) is even then an

i = 1 else an
i = 0}}

else{if int(i/4) is even then if int(i/8)
 endif
next

This is, what the short assembler routine testbits.s does.
The rest is done in c.

